PRELIMINARY COMMUNICATION

ELECTRON SPIN RESONANCE SPECTRA OF TRIMETHYLSILYL, TRIMETHYL-GERMYL AND RELATED FREE RADICALS IN SOLUTION

S.W. BENNETT, C. EABORN, A. HUDSON, H.A. HUSSAIN and R.A. JACKSON The Chemical Laboratory, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received January 3rd, 1969)

The reactions of silicon and germanium containing free-radicals are receiving increasing attention¹, but few ESR studies on neutral radicals of this kind have been made. The flow systems often employed for observing organic radicals are inconvenient for organometallic systems, particularly on account of the large quantities of materials used. However, Hudson and Hussain² have recently shown that photolysis of solutions of tertbutyl peroxide in organic solvents at low temperatures gives rise (via hydrogen abstraction by the initially produced tert-butoxy radicals) to radicals derived from the solvent.

We have used this technique to prepare the radicals Me_3Si° , Me_3Ge° , $Me_3SiSiMe_2^{\circ}$ and $Me_3SiSiMeH^{\circ}$. Solutions of tert-butyl peroxide in the appropriate organometallic solvent at about -70° were photolysed by UV light from a 250 watt Osram lamp, focussed by a quartz lens into the cavity of a Varian E3 spectrometer (Table 3).

Radical	Coupling constants			Approximate	Description
	œ ∙H	βн	γ-н	g value	
Me ₃ Si [*]	6.42	_	_	2.0031	decet
Me ₃ Ge [•]	5.5	-		2.0104	decet
Me ₃ SiSiMe ₂ •		8.31	0.47	2.0036	septet of decets
Me ₃ SiSiMeH*	16.5	8.25	0.30	2.0037	six lines, split into decets

TABLE 1 SUMMARY OF ESR DATA

The trimethylsilyl radical (Fig.1) shows a decet with $a_{\rm H}$ 6.42 gauss. The outside lines are visible under increased gain and the intensities are consistent with the presence of nine equivalent protons. (A small amount of an unidentified radical is also visible). Trimethylgermyl gives rather broader lines than Me₃Si^{*}, probably because of an increase in the anisotropy of the *g*-tensor coupled with the Brownian motion of the radical; the lowest field line is not sufficiently intense to be visible, and the high field lines are partly obscured by another radical of lower *g* value. The hyperfine splitting is 5.5 gauss, slightly lower than that of the trimethylsilyl radical. The smallness of the hyperfine splitting in Me₃Si^{*} and

Fig.1. ESR spectrum of the trimethylsilyl radical.

Me₃Ge[•] compared with 22.7 gauss for tert-butyl is presumably due (a) to the probable non-planarity of these radicals (SiH₃[•] and GeH₃[•] are non-planar³) and (b) the greater size of silicon and germanium and their reluctance to form multiple bonds, which will reduce the hyperconjugative coupling of β -protons. ²⁹Si studies and MO calculations are in progress to ascertain the relative importance of these effects.

Me₃SiSiMe₂[•] gives a heptet (8.31 gauss) split into decets (0.47 gauss). The larger coupling constant, compared with Me₃Si[•], possibly indicates a more planar radical. This may be due to conjugative interaction of the free electron with the β -silicon atom, or to an electronegativity effect. Electronegative substituents inductively reduce the charge density in the bonding orbitals of the α -silicon, which results in an increased tendency of the non-bonding electron to occupy a lower energy orbital (*i.e.* with more s character), resulting in a non-planar radical. For example in analogous carbon radicals, CF₃[•] is non-planar, whereas CH₃[•] is essentially planar.

Me₃ SiSiMeH[•] gives six lines (8.25 gauss separation), split into decets (0.30 gauss). This spectrum is tentatively analysed in terms of a Si-H splitting (16.5 gauss) almost exactly twice as large as the α -methyl proton splitting. This suggests that the more nearly planar structure of this radical (compared with SiMe₃[•] or SiH₃[•]) causes a larger change in the Si-H coupling constant (8.1 gauss in SiH₃[•]) than in the α -methyl proton coupling constant (6.42 gauss in SiMe₃[•]). This interpretation supports a negative sign for the Si-H coupling constant, as proposed by Gordy and coworkers³ for SiH₃[•].

The increase in g values from Si to Ge follows the same order as for SiH₃ and GeH₃³. The increase from Me₃Si to the disilyl radicals is probably due to the larger and heavier Si substituent.

REFERENCES

- e.g. R.A. Jackson, Advan, Free-Radical Chemistry, 3 (1969) 231.
 A. Hudson and H.A. Hussain, Mol. Phys., in press.
 R.L. Morehouse, J.J. Christiansen and W. Gordy, J. Chem. Phys., 45 (1966) 1751; G.S. Jackel, J.J. Christiansen and W. Gordy, J. Chem. Phys., 47 (1967) 4274.

•

J. Organometal. Chem., 16 (1969) P36-P38